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Abstract-We have developed a quantitative model of void and vein development in fault zones based on 
observations of fault roughness and the contact characteristics of rough, directionally anisotropic fractal surfaces. 
This model includes progressive dilation of the fault during slip events and the elastic deformation of the surfaces 
normal to the fault plane (closure) as new void space develops. The model predicts vein geometries that are 
qualitatively similar to those observed in fault-controlled mineral deposits. The statistics of the vein system are 
described and strategies for sampling of such structures by drilling are developed. The results have significant 
imolications for evaluation of ore reserves and evaluating the fluid transport properties of faults. Copyright 0 
1946 Elsevier Science Ltd 

INTRODUCTION 

Structures in fault zones affect the generation and pro- 
pagation of earthquake ruptures (Sibson 1989), the flow 
of groundwater and hydrocarbons (Smith ef al. 1990, 
Knipe 1993), and play an important role in the origin of 
mineral deposits (Newhouse 1940). Roughness of fault 
surfaces influences rupturing by affecting fluid transport 
properties, frictional coefficients and rupture propaga- 
tion energy. Mismatch between ridges and furrows on 
opposite sides of fault surfaces creates channeling of 
fluid flow and formation of void space for fluid entrap- 
ment and vein deposition. Alternatively, penetration of 
opposing surfaces generates attrition breccia, and these 
sites form strong patches or asperities within the fault 
zone because fresh rock must be broken to accommo- 
date further displacement. 

Frictional properties of faults are affected by rough- 
ness at scales less than 1 m (Scholz 1988, Power & Tullis 
1992), but rupture propagation, large-scale fluid chan- 
neling and the formation of mineral deposits may be 
affected by roughness at length scales of decameters or 
more. Many years ago, Gilbert (1928) suggested that 
bedrock ridges or spurs, with spatial scales up to kil- 
ometers, form in the hanging walls of normal faults 
above bumps in the primary fault surface. Mineralized 
vein systems develop in dilational cavities that vary in 
dimension from millimeters to decameters, but the latter 
scale is probably most important as the site of commer- 
cially exploitable ore (Newhouse 1940). 

We have developed a quantitative model of void and 
vein development in fault zones based on observations 
of fault roughness and the contact characteristics of 

rough, directionally anisotropic fractal surfaces. This 
model includes progressive dilation of the fault during 
slip events and the elastic deformation of the surfaces 
normal to the fault plane (closure) as new void space 
develops. The model predicts vein geometries that are 
qualitatively similar to those observed in fault- 
controlled mineral deposits. The statistics of the vein 
system are described and strategies for sampling of such 
structures by drilling are developed. The results have 
significant implications for evaluation of ore reserves 
and evaluating the fluid transport properties of faults. 

In what follows we present field observations on the 
character of faults and associated vein systems. We then 
use this information to develop a mathematical model of 
rough-walled fault surfaces and show the properties of 
such a fault under varying shear offset and normal stress. 

FIELD OBSERVATIONS 

Fracture and joint surfaces 

Measurements and analysis of surface profiles of natu- 
ral fractures have established that fracture surface top- 
ography can be represented in terms of fractal geometry 
(Brown & Scholz 1985, Power et al. 1987, Power & Tullis 
1991, 1992, Brown 1995). Topographic profiles are 
treated as spatial series, and Fourier analysis (especially 
the power spectrum) is used to analyze their properties. 
The power spectrum is computed by breaking a time or 
spatial series, in this case the profile, into a sum of 
sinusoidal components: each with its own wavelength, 
amplitude and phase (Fig. 1). The squared amplitude of 
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Fig. 1. Illustration of the power spectrum of a surface profile. The 
surface profile (irregular curve, upper left) is decomposed into a series 
of sinusoidal components (lower left). Each component is character- 
ized by its wavelength (I), amplitude (A) and phase (relative position 
of the first peak of the sinusoid to that of all others). A plot of the 
power A2 vs the spatial frequency l/i, for all sinusoidal components is 

known as the power spectrum (graph on the right). 

each component is referred to as its power and a plot of 
power vs wavenumber or inverse of wavelength is 
referred to as the power spectrum. The phase indicates 
the position of the first peak of each sinusoid relative to 
all others. The phase spectrum is a plot of the phase as a 
function of wavenumber. Phase spectra for rough sur- 
faces are typically random, that is there is no consistent 
relation between phase and wavenumber. The power 
per unit frequency interval is known as the power 
spectral density. Excellent introductions to spectral 
analysis are given by Bendat & Piersol (1971) and BAth 
(1974). 

Linear profiles of fracture and joint surface profiles 
exhibit power spectral density functions of the form: 

G(k) = Ck-*, (1) 

indicating self-affine fractal geometry (Mandelbrot 
1983). Here, k is the wavenumber related to the wave- 
length A according to k = 2x/A. The exponent a depends 
on the fractal dimension of a surface D as a = 7 - 20. 
The fractal dimension of a linear profile is simply D, = D 
- 1. The,fractal dimension describes the proportion of 
high frequency to low frequency roughness and is a 
measure of surface texture. For natural fracture sur- 
faces, D falls in the range 2 5 D 5 3, with small values 
representing smoother surfaces. The constant C deter- 
mines the standard deviation of the surface roughness 
about its mean plane at a particular reference profile 
length. Additionally, the two surfaces comprising a 
fracture are often closely matched at long wavelengths 
and mismatched at small wavelengths, resulting in an 
aperture distribution whose spectrum has the form of 
equation (1) at small wavelengths, but flattens out at 

long wavelengths (Brown & Scholz 1986, Power & Tullis 
1992, Brown 1995). 

Fault surfaces 

Studies of fault surfaces over a variety of scales lead to 
a fractal description of the roughness similar to that for 
fractures and joints (Scholz & Aviles 1986, Power et al. 
1987, Bruhn et al. 1991, Power & Tullis 1991, Lee & 
Bruhn 1992). Below we provide some additional details 
of and evidence for this description. 

Lee & Bruhn (1992) made a detailed outcrop study of 
fault anisotropy on normal fault surfaces from several 
rock types. They found that surface properties of natural 
faults are complex, with amplitude to wavelength scaling 
and fractal dimension a function of direction along the 
fault surface, and also dependent on overall scale. They 
suggest that fault topography is roughly self-affine at 
wavelengths between 1 mm and 5 km, with a general 
decrease in fractal dimension as a function of increasing 
wavelength. They note anisotropy in the roughness 
measured by an azimuthal variation in the ratio of 
amplitude to wavelength of the fault topography. This 
ratio varies from 2.0 to 4.5 for the faults measured in 
their study. The long-axis of topographic grain is aligned 
parallel to slip direction. They find that D varies from 
approximately 1.5 at the 10 cm scale to 1.25 at the 
several meter scale. At longer wavelengths D varies 
between 1.1 and 1 .O. 

The sinuous traces of faults and scarps on geological 
maps reflect the complex interaction between erosional 
topography and corrugated fault surfaces (Scholz & 
Aviles 1986, Bruhn et al. 1991). Although fault traces 
may be corrected for the effects of erosional topogra- 
phy, the resulting profiles yield little information on the 
extent and nature of the corrugated structure in the 
subsurface. Exposures of faults in outcrop show specta- 
cular, corrugated topography in many cases, but the 
exposures are limited to dimensions of several tens of 
meters at most. Geological maps constructed during 
mining of fault controlled ore deposits provide structural 
information at scales up to several hundred meters, a 
much larger area than observed in outcrop, and provide 
subsurface information that is not available from ordin- 
ary geological maps (Fig. 2). 

Openings generated by sliding of currugated fault 
surfaces are recognized as a critical element in the 
formation of veins in fault-controlled ore deposits 
(Newhouse 1940). We selected maps and vein measure- 
ments from several deposits to generate appropriate 
parameters for fractal modeling (Table 1). 

Examples from reverse faults include mesothermal 
quartz-gold veins of the Mother Lode District, Califor- 
nia (Knopf 1929) and Talkeetna Mountains, Alaska 
(St011 1940, Ray 1954). The localization of epithermal 
Pb, Zn, Au and Ag in void space and breccia generated 
during fault slip is well documented in normal faults 
from the Slocan District, British Columbia (Roscoe 
1951), the Mogollon District, New Mexico (Ferguson 
1927), and the Daisy Mine, Utah (Wu & Bruhn 1994). 
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Fig. 2. Mine map of the Independence reverse fault quartz-gold vein deposit, Talkeetna Mountains, Alaska. Each trace 
represents a structure contour on the fault and vein system. The cross-section illustrates the general shape of the fault and 

vein system along line A-A’ Mine data after Ray (19.54). _ 

Similar deposits occur in strike slip faults of the La Plata 

District, CO (Eckel 1949). 
Mine maps of fault controlled ore deposits show the 

trace of the fault at different levels below the Earth’s 
surface (Fig. 2). These maps record the sinuousity of the 
faults, and can be used to compute the standard devi- 
ation and amplitude of the fault sinuosity at scales 
between a few meters and hundreds of meters. The maps 
are not adequate, however, for determination of the 
fractal dimension because they provide accurate infor- 
mation on spatial scaling only over 1-2 orders of magni- 
tude at best. For this reason, we use the results of studies 
with more detailed measurements of fault surface rough- 
ness to assign a ‘typical’ fractal dimension for modeling 

purposes (Power et al. 1987, Lee & Bruhn 1992). 
The fault profile data in Table 1 is used to ensure that 

the amplitude scaling (amplitude to fault profile length 

ratio) of the model fault roughness is consistent with that 
observed in natural fault zones. The true amplitudes or 
sinuousity of the mapped faults is found as follows: we 
digitize the fault traces, find the average strike and dip of 
the fault by fitting a plane through the traces using 
linear, least-squares regression, and generate a profile of 
the fault on each mine level. Each profile is the deviation 
of the fault surface about the mean plane at the depth of 
a specific mining level. Critical parameters for creating 
fractal models of fault surfaces include the peak to peak 
amplitude, standard deviation of amplitudes, and the 

profile length (Table 1). The profiles are essentially 

perpendicular to direction of slip for reverse and normal 
faults, but parallel to slip direction for strike slip faults. 
The ratio of peak-to-peak amplitude to profile length is 
0.1-0.01 for profiles that are up to several hundred 
meters long. These values are about the same as (or only 
a bit larger than) those found on several slip- 

perpendicular fault profiles (less than 10 m long) by 
Power and Tullis (1991). 

The anisotropy of fault surfaces is defined by elongate 
topography which mostly parallels the direction of slip. 
Anisotropy is documented by profiling a fault surface in 
at least two directions, one parallel and the other per- 
pendicular to slip (Power et al. 1987, Power & Tullis 
1991, 1992), and comparing the ratio of profile ampli- 
tude at specific wavelengths between profiles. Lee & 
Bruhn (1992) made a detailed study of fault anisotropy 
on normal fault surfaces from several rock types, and 
found that the ratio of amplitude to wavelength varies 
systematically as a function of direction. Although vari- 
able, the ratio of amplitude to wavelength is on average, 
about 2.5:1 between the slip perpendicular and slip 
parallel directions. These measurements are limited to 
outcrops, and therefore restricted to scales of tens of 
meters and smaller. However, contour maps of fault 
structures in mines (Roscoe 1951) suggest that an aniso- 
tropy of 2.5: 1 is also representative at scales greater than 
100 m, which is the spatial range of our fractal models. 
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Table 1. Fault parameters determined from mine maps 

Independence mine, Talkeetna Mountains, Alaska (reverse fault) 
(Strike parallel profiles from map by Ray 1954) 

Mine level Amplitude (+) Amplitude (-) SD Profile length Total amplitude length 

-213 7.18 -10.33 4.95 227.30 0.08 
-256 5.87 -7.88 4.35 87.09 0.16 
-274 17.74 -18.76 7.75 522.70 0.07 
-292 8.90 -6.06 4.29 138.80 0.11 
-335 9.92 -14.27 5.03 553.20 0.04 
-365 7.30 -7.75 3.33 175.50 0.09 
-381 3.71 -5.15 1.70 146.00 0.06 
-396 19.41 -16.07 9.66 351.40 0.10 
-457 19.00 -19.86 9.50 269.00 0.14 

Average values 5.62 274.55 0.09 

Daisy Mine, Oquirrh Mountains, Utah (normal fault) 
(Strike parallel profiles from map provided by T. Shrier, unpublished data) 

Mine level Amplitude (+) Amplitude (-) SD Profile length Total amplitude/length 

-91 2.97 -2.63 1.50 134.00 0.04 
-122 6.00 -4.52 2.03 200.00 0.05 
-152 5.58 -3.28 1.89 116.00 0.08 
-160 5.64 -3.91 2.28 174.00 0.05 
-213 7.05 -3.67 2.08 434.00 0.02 

Average values 1.96 211.60 0.05 

Rambler Fault, Slocan Mining District, British Columbia (normal fault) 
(four profiles generated parallel to fault slip direction from contour map by Roscoe 1951) 

Profile Amplitude (+) Amplitude (-) SD Profile length Total amplitude/length 

A (slip paral.) 15.30 -5.31 4.06 340.00 0.06 
B (slip paral.) 14.88 -6.38 5.30 344.00 0.06 
C (slip perp.) 12.93 -17.45 8.86 227.00 0.14 
D (slip perp.) 8.07 -5.53 3.35 227.00 0.06 

Plymouth Mine, Mother Lode District, California (reverse fault) 
(dip-parallel profile of hanging wall contact illustrated in Knopf 1929) 

Profile Amplitude (+) Amplitude (-) SD Profile length Total amplitude/length 

Down-dip 0.70 -0.81 0.38 48.00 0.03 

La Plata Mine, Colorado (transcurrent fault) 
(from map by Eckel 1949) 

Mine level Amplitude (+) Amplitude (-) SD Profile length Total amplitude/length 

-30 3.64 -3.31 2.00 116.00 0.06 

Note: All units are in meters, and all profile amplitudes are deviations from a best-fit plane to the fault zone. 

The fractal dimension of most natural surfaces lies in 
the range 2.0 5 D I 2,3 (Brown & Scholz 1985, Power et 

al. 1987, Power & Tullis 1991, 1992). Recent field 
studies by Lee & Bruhn (1992) find that the fractal 
dimension of normal fault surfaces is a function of 
profile length. The dimension is in the range 2.2 5 D I 
2.3 for centimeter to meter length profiles. The longest 
profiles made by directly measuring individual fault 
surfaces are several tens of meters long, and at this scale 
the fractal dimension falls in the range 2.1 I D 5 2.2. At 
a scale of hundreds of meters to kilometers as measured 
on geologic and mine maps the dimension falls in the 
range 2.0 5 D 5 2.1. At these largest scales the resol- 
ution is poor and the ‘fault’ traces may actually partly 
reflect the intersection and linking together of several 
fault surfaces rather than the topography of an indi- 
vidual surface. We use D = 2.2 for modeling purposes, a 
value roughly in the center of the range for profiles 
centimeters to tens of meters long. 

The total displacement on the faults studied (Table 1) 
is estimated at tens to hundreds of meters. The amount 
of slip per event is not known in most cases. Often vein 
deposition is episodic, as inferred by the compound 
nature of veins containing breccia bodies and slices of 
wall rock. Robert & Boullier (1993) suggest that for a 
few well-defined cases, single event displacement on 
some Val d’Or reverse faults is approximately 0.5-2 cm 
per event. This amount of slip, together with the spatial 
scale of the Val d’Or faults, is consistent with generation 
of small to moderate earthquakes, perhaps on the order 
of M = 3 or less (F. Robert personal communication). 
We assume that values between 1 and 10 cm per event 
would be appropriate for the purpose of modeling the 
formation of a typical fault-controlled ore deposit, be- 
cause the size and cumulative displacement of Val d’Or 
reverse faults are similar to those cited in Table 1. 
However as shown in a later example, larger displace- 
ments per slip event could also be considered to investi- 
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gate the scaling of void space generation over a range of 
earthquake magnitudes. 

Vein morphology 

Veins in fault zones and surrounding wall rock are 
generated by a number of processes, including dynamic 
and quasi-static fracture propagation and fluid infil- 
tration, and the abrupt influx of hot, ascending fluids as 
fracture permeability is enhanced by rupturing of corru- 
gated fault surfaces (Newhouse 1940, Sibson 1989). 
Here, our focus is on veins generated during fault slip by 
the filling of newly opened voids, rather than on second- 
ary veins that are preferentially oriented with respect to 
the regional stress field, and presumably develop in the 
interseismic period. 

Several structural properties of natural vein systems 
must be at least partially simulated by a viable fault 
model. These include both the structure of the fault- 
vein system as a whole, which is generated by multiple 
faulting and mineralizing events, and the structural 
characteristics of individual veins that form as the result 
of a single faulting and fluid influx event. The cumulat- 
ive vein thickness is a combination of material added 
during episodic void formation as well as structural 
disruption, overlapping and distention of pre-existing 
vein material. 

The following general observations of fault controlled 
vein systems have been made (Knopf 1929, Newhouse 
1940, Stoll 1940, Eckel 1949, Roscoe 1951, Ray 1954, 
Peters 1993, Robert & Boullier 1993). Fault-controlled 
vein systems are undulating, tabular to pipe-like bodies 
composed of both intact and brecciated vein minerals, 
and slices of hydrothermally altered wall rock. Vein 
width varies from nearly zero to more than 10 m in some 
deposits, exhibiting an overall ‘pinch and swell’ geom- 
etry when viewed in cross-section. Lateral extent, like 
thickness, is highly variable and ranges from small 
centimeter scale pods to undulating tabular layers that 
can be traced for hundreds of meters to kilometers. 
Faults occur as both single and multiple branches and 
strands, that cut up and down through the vein system, 
and locally cut into the footwall, bypassing the vein 
margins until the fault cuts back into the vein. Fault 
surfaces occur in various locations along the extent of a 
given vein; sometimes directly along one margin or the 
other or sometimes through the vein interior. Cross- 
cutting relationships observed between faults and 
cemented breccia and gouge zones indicate that the fault 
system evolved with time. This braided and duplex fault 
pattern partly explains the observed spatial variability in 
vein width. Veins presumably become thickened by 
structural overlap, or thinned by offlap of vein material, 
depending on the direction of tectonic transport and the 
angle at which a fault strand cuts across the vein system. 
Blocks of wall rock are incorporated into the interior of 
the vein system where fault strands located in the wall 
rock cut back into the vein in the direction of tectonic 
transport. Contour lines of vein thickness on dilation 
maps are mostly elongated in the direction of fault slip, 

presumably reflecting the anisotropy of the corrugated 
fault surfaces. But in some areas thickness contours are 
oriented at high angle to slip direction. This may reflect 
vein thickness variations resulting from dilation (gaps 
opened) from either movement on the braided and 
branching fault system, or by abrupt bending of fault 
surfaces at lithologic contacts and where subsidiary 
faults intersect the main fault zone. 

The fault-vein system is composed of numerous indi- 
vidual veins and whisker-like veinlets that form where 
mineral-rich fluids move along larger fractures and infil- 
trate brecciated rock (Knopf 1929, Stoll 1940, Boullier 
& Robert 1992). Inspection of outcrops, published 
photographs and thin sections suggest that the thickness 
of individual veins is mostly in the sub-millimeter to 
centimeter range, with a thickness to length ratio of 
0.01-0.001. Remnants of individual veins appear as thin, 
wispy discolored laminae and lenses to the naked eye. 
Truncation of laminae against one another provides 
evidence for episodic faulting and fluid influx (Fig. 3). 
Ore bearing fluid is usually introduced only during part 
of the faulting history, so that much of the composite 
vein system consists of barren minerals (Knopf 1929, 
Newhouse 1940, Stolll940). This has major implications 
for predicting ore grade based on a geostatistical analysis 
of vein geometry. Ore grade is often not strongly corre- 
lated with vein system thickness, a hypothesis that has 
been borne out by bitter experience (Knopf 1929, Ray 
1954). Recently, however, Sanderson ef al. (1994) have 
found empirical relationships between ore grade and the 
distribution function describing cumulative vein thick- 
ness. In that study, high ore grade is associated with 
zones having large numbers of thick veins relative to thin 
veins. An interpretation of this observation is that the 
large-thickness veins must also be longer and therefore 
more likely to be interconnected hydraulically with 
remote sources of ore-bearing fluids. The assumption of 
long veins being thicker is based on empirical obser- 
vations relating fault slip to fault length by Scholz & 
Cowie (1990). The model of rough faults proposed 
below leads to this same result. 

MODEL OF ROUGH-WALLED FAULTS 

The observation that fracture and fault surfaces are 
fractal immediately leads to a method for generating 
simulated surfaces on the computer. The method we use 
for generating fractal surfaces is described in detail by 
Brown (1995). This method is summarized briefly be- 
low. 

One method of computing the power spectral density 
function described earlier is to take the Fourier trans- 
form of profiles of the surface topography (e.g. Bendat 
& Piersol 1971). This calculation results in a series of 
sinusoidal components, which can be characterized by 
their wavelength, amplitude, and relative phase (Fig. 1). 
This information, collectively known as the amplitude 
spectrum, is a series of complex numbers which contains 
both amplitude and phase information. 
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Fig. 3. Sketch of hand sample sized slab of the gold-bearing quartz vein in the Independence Mine, Alaska. The quartz vein 
is located in a reverse fault. Note the multiple, truncated vein boundaries which indicate several episodes of fluid flow and 

mineralization. 

Brown (1995) presented a spectral synthesis method 
to generate computer models of both directionally iso- 
tropic and anisotropic fractal surfaces. The method 
works by constructing a two-dimensional complex am- 
plitude spectrum which obeys equation (1) and in addi- 
tion has a random-phase component (i.e. no 
deterministic relationship between phase and spatial 
frequency). The fractal surface is just the inverse Fourier 
transform of this complex amplitude spectrum. The 
standard deviation of the surface height is set after the 
inverse transform is taken. 

We wish to consider the effect of directionally aniso- 
tropic roughness on void development along a fault. 
Therefore, we use the spectral synthesis method de- 
scribed briefly above, but with equation (1) modified to 
include anisotropy as follows: 

G(k) = C[(/?,/U)~ + (kyb)2]-(3.5-D). (2) 

The ratio b/a is the degree of anisotropy. For b/a < 1 the 
anisotropy is transverse to x; for b/a = 1 the surface is 
isotropic, and for b/u >l the anisotropy is parallel to X. 
In this model the surface has the same fractal dimension 
in all directions (i.e. the same proportional change in 
amplitude with a corresponding change in frequency), 
but at each wavelength the absolute amplitude of the 
sinusoidal components differ by a constant factor in each 
direction. Another possible type of anisotropy sugges- 
ted by the field measurements of Lee & Bruhn (1992) is 
where the fractal dimension varies with orientation 
angle, i.e. D = D(0) where 8 = arctan (k,lk,). While 
this possibility is easily implemented in equation (2), it is 
not considered further here since it is not clear at this 
time which model of anisotropy is the best. 

To force two surfaces of a fracture or fault to be 
matched at long wavelengths, the two surfaces could be 

generated with the same random number seed and 
anisotropy factor, but the random phase spectrum being 
identical at wavelengths only above a particular value. 
The length scale at which the phase spectra of the two 
surfaces become different would be chosen as a fraction 
of the total surface size. With this modification in the 
phase spectrum, the power spectrum of the resulting 
fracture aperture closely resembles that observed for 
natural fractures and joints (Brown 1995). Examples of 
surfaces generated by this method are shown in Fig. 4. 

GEOMETRIC MODEL OF VOID DEVELOPMENT 

In nature, a fault slips through a complex process 
including shearing off of asperities, secondary faulting, 
brecciation and injection of cataclastic material into new 
voids. Fault surfaces are subsequently modified by the 
deposition and dissolution of vein minerals caused by 
chemical disequilibrium between fluid and wall rock. 
Modification of fault surfaces by these physical and 
chemical processes is mathematically intractable, so we 
use a much simplified procedure to create and slip each 
new generation fault surface. In our model we consider 
only the geometric and elastic components of void 
formation and deformation. A discussion of the limits of 
applicability of these assumptions appears at the end of 
this section. 

To understand the model, the following point of 
clarification may be necessary. Many discussions of vein 
fillings (e.g. p. 241 of Ramsay & Huber 1983) consider 
the case of vein growth contemporaneous with slow 
(quasi-static) void opening. Here we consider rapid 

opening due to fault slip and subsequent filling. 
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Fig. 4. Examples of surfaces and apertures generated with the fractal algorithm of Brown (1995). The scales on all three 
axes are in grid units, indicating both distance (units of length) in the fault plane and topographic height normal to the fault 
plane. (a) Isotropic surface with fractal dimension D = 2.2. (b) Anisotropic surface with dimension D = 2.2 and anisotropy 
parameters b = 3, a = 1. (c) Aperture distribution formed by contact of isotropic surface (a) with another similar surface. 
Surfaces are mismatched at wavelengths smaller than one-quarter of the total surface size shown. (d) Aperture distribution 
formed by contact of anisotropic surface (b) with another surface mismatched at one-quarter of the total surface size. Note 

that the aperture distribution takes on an anisotropic character as well. 

Undeformed aperture: zero effective normal stress 

At the initiation of slip assume that the two opposing 
fault surfaces are anisotropic fractals and match each 
other exactly (i.e. are mirror images). Slip occurs paral- 
lel to the major axis of the anisotropy. We assume that at 
first the surfaces, since they are rough, will over-ride one 
another resulting in the surfaces being propped apart by 
those asperities with wavelengths on the order of the slip 
increment. We ignore any damage accrued during the 
wear processes accompanying slip. The problem, then, 
is a geometric one of pulling the surfaces apart, offset- 
ting them by the amount of slip, then placing them back 
together until they touch. Examples of the aperture or 
void distribution thus formed between the two surfaces 
are given in Fig. 5. In what follows, we consider the 
properties of the aperture distribution under zero effec- 
tive normal stress (i.e. undeformed). Following that, we 
will discuss the problem of closing the void space by 
applying a normal load. 

Texture of aperture. The void distribution formed in this 
way has the following properties. The aperture, when 
viewed in three dimensions, contains a dominant tex- 
ture. Variations in the amplitude (pinching and swell- 
ing) of the aperture are almost periodic, that is 
amplitude variations are repeated in a statistical sense 
throughout the fracture plane. The aperture distribution 
is statistically stationary at length scales larger than the 

amount of slip. The bumps formed by aperture highs, for 
example, are anisotropic with the long axis of the aniso- 
tropy parallel to that of the original surfaces. Both the 
wavelength and amplitude of these features are deter- 
mined by the amount of shear offset between the sur- 
faces (Fig. 5). 

Probability density function. The probability density 
function for the aperture generated by the contact of two 
fractal surfaces offset in shear is nearly Gaussian in 
shape (Fig. 6a). The Gaussian distribution is a sym- 
metric ‘bell-shaped’ curve which is described completely 
by the mean and the standard deviation. One of the first 
questions we can ask is how the mean and standard 
deviation of this distribution vary with shear offset of the 
two surfaces. Figure 6(b) shows the results. 

Variogram. The variogram is widely used in geostatistics 
to evaluate the degree of spatial correlation between 
pairs of measurements separated by a specified distance 
or lag. The variogram of a profile z(x) is defined as: 

I 

LIZ 

y(z) = lim [2(x + r) - z(# d_X, (3) 
L-m -L/2 

where x is horizontal distance, r is the lag and L is the 
length of the profile. Examples of the variogram of the 
aperture as a function of shear offset are shown in Fig. 7. 

A feature of significance in many variograms is the 
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20 40 ( 
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Fig. 6. Examples of the probability distribution for aperture heights created by shear offset of two fractal surfaces with 
anisotropy of 3:l. Offset is parallel to the greatest principal axis of anisotropy. (a) Probability density functions for shear 
offsets of 20 and 40 units in a 256 x 256 fault. Fractal dimension is D = 2.2. (b) Dependence of standard deviation of 
roughness on shear offset for fractal dimensions of D = 2.0, 2.2 and 2.5. Aperture is expressed in units of the standard 

deviation of the surface heights at a length scale of 256. 
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Fig. 7. Example variograms for aperture profiles created by shear offset of two fractal surfaces with a fractal dimension of 
D = 2.2 and anisotropy of 3: 1. Offset is parallel to the principal axis of anisotropy. Plot (a) represents profiles parallel to the 
slip direction and plot (b) represents profiles perpendicular to slip. Horizontal axis is the lag, r, in grid units. The vertical axis 
is the variogram normalized by the variance of the individual contacting surfaces at a length scale of 256 grid units y/ofsh 
Labels 2,4,8,16 and 32 shown to the right identify the amount of shear offset for each curve in numbers of grid units. The 
profile length used for the calculation is 128 grid units. Note that variance parallel to slip is consistently lower than that 
perpendicular to slip. the constant value of variance reached at large lag ‘sill’ increases with shear offset. and the lag at which 

the sill is reached increases with shear offset. 

‘sill’. The sill is the area in which the variance becomes 
about equal to the variance for the data set as a whole. 
This implies that the data are not correlated at spacings 
greater than the range where the sill begins. Figure 7 
shows that the variograms representing profiles of aper- 
ture distributions created by slip between fractal sur- 
faces have well-defined sills. The range at which the sill is 
reached is a function of the amount of shear offset and 
the direction relative to the anisotropy of the surface 
roughness and the slip direction. At length scales larger 
than where the sill is reached, the aperture becomes a 
statistically stationary random function. 

Elastic closure of voids under normal stress 

When a normal load is applied to a rough-walled 
fracture or fault, one may expect closure consisting of 
both elastic and inelastic components. At this time, we 
consider only the elastic contribution to this process. We 
have studied the elastic closure of voids along a fault 
under normal load using a numerical method. We sum- 
marize the basic results of these simulations below. 

Numerical method. Calculating aperture and normal 
stress as a function of position on the rough surfaces of 
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(a) Offset=20 (b) Offset=40 
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Fig. 5. Examples of aperture or void space created by shear offset of two fractal surfaces (D = 2.2) with anisotropy of 3: I. 
Offset is parallel to the greatest principal axis of anisotropy (horizontal axis on the figures). The scales on the axes are in grid 
units corresponding to distance (units of length) in the fault plane. (a) Image of aperture distribution for offset of 20 units in 
a 256 x 256 fault. (b) Image of aperture distribution for offset of 40 units. Low to high apertures range from black to white. 
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Fig. 10. Cross-section of a vein system. (a-d) Evolution of a composite vein formed by four discrete slip episodes. At each 
step (a-d) the vein is fractured, the surfaces are slid past one another while the fault dilates, and the resulting open space is 
filled with vein material. Each sub-vein is assigned a different gray level in the image. (e) Close-up view of the final step (d) 

showing the complex cross-cutting relationships among the separate vein elements and the entrainment of wall rock. 
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Dimensionless Aperture 

Fig. 8. Example probability density functions of an aperture distribution. Two surfaces with fractal dimension D = 2.2 and 
anisotropy 3:l were offset by eight grid units and placed in contact. (a) The aperture distribution deformed under normal 
stress. The aperture was closed by 2 standard deviations from the initial contact. The resulting mean aperture divided by the 
standard deviation of the original surfaces at length 256 grid units is 0.0951. (b) The aperture distribution formed by simple 
overlap of the same surfaces without elastic deformation. The surfaces were overlapped to be equivalent to a closure of 2 
standard deviations from the initial contact. Negative apertures (overlap) have been truncated to zero. The resulting 
normalized mean aperture is 0.0918. (c) Original undeformed aperture distribution when the surfaces just contact under 

zero normal stress. 

two contacting elastic solids is a mixed boundary value 
problem. The problem is non-linear because the regions 
of different boundary type, open or closed aperture, 
must be found as part of the solution. This problem can 
be solved by a numerical relaxation method described 
first by Andrews (1988) and in greater detail by Brown & 
Andrews (in preparation). 

In the method, two rough surfaces are placed together 
numerically and regions of overlap are recorded. Since 
overlap is not physically possible, a stress must be 
applied at the overlapping regions to bring the surfaces 
back into contact. Initially the stress at each overlapped 
point is estimated as being proportional to the amount of 
overlap. A two-dimensional distribution of contact 
stresses is thereby determined. A Fourier transform 
elasticity solution is used to find the actual displacements 
on a two-dimensional half space due to this stress field. 
The resulting surface displacements of the half space are 
subtracted from the topography of the contacting sur- 
faces and a new distribution of overlapping regions is 
calculated. This procedure is repeated in an iterative 
fashion until all significant overlaps are removed and 
further stress change is negligible. The final results of the 
simulation are the elastically deformed aperture and the 
spatial contact stress distribution. This numerical 
method has been compared to the analytic solution of 
Hertz (Timoshenko & Goodier 1970) for the contact of 
spherical bodies with excellent results. 

Texture of aperture. As two surfaces are pressed 
together under normal stress the aperture distribution 

closes down and it develops flat regions at the contact 
areas. These contacts grow in size and the aperture highs 
between them change shape slightly as the normal stress 
increases. The deformation can be quantified by looking 
at the statistics of the aperture as follows. 

Probability density function. When an aperture distri- 
bution is deformed under normal stress the local minima 
in the aperture become contact points and the surfaces 
deform locally near these contacts. Before the surfaces 
touch the aperture distribution is a symmetric ‘bell- 
shaped’ curve that closely fits a standard Gaussian curve 
(Fig. 8~). After contacts form, the distribution becomes 
truncated at zero aperture and the shape of the curve 
changes slightly near the contacting end (Fig. 8a). The 
distortion of the distribution due to fairly significant 
amounts of contact (in excess of 30% contact area) is 
minor, with most of the original shape being preserved 
in the non-contacting areas (compare Figs. 8a and b). 
Therefore, the distortion of the aperture can be ade- 
quately modeled as truncation to zero at the contacting 
points. 

Normal stress-closure relation. The elastic model gives a 
relation between the applied normal stress and the void 
closure. These results can be expressed in dimensionless 
form where the normal stress is normalized by the elastic 
constants and the surface separation is normalized by 
the standard deviation of the roughness of the original 
surfaces. Specifically, the dimensionless stress 3 is: 
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Fig. 9. Normal stress-closure relation for a fault with fractal dimension D = 2.2 and 3:l anisotropy. Labels 1,2,4,8, 16 and 
32 represent the amount of shear offset in grid units. (a) Dimensionless plot of normal stress 3 vs aperture d. See text for 
definition of these parameters. (b) Curves of (a) scaled to represent a fault in granite with roughness characteristics similar 
to the Independence Mine Fault: standard deviation of surface over a length scale of 256 m is 5.6 m, shear modulus is 2 x lo4 
MPa, and Poisson’s ratio is 0.25. The normal stress of 160 MPa (dashed line) would be obtained on a 60” dipping normal 

fault at approximately 10 km depth. The grid unit and unit of shear offset for (b) is 1 m. 

s= S”.h 
k.456’ (4) 

l-v 

The actual normal stress is 5,. Length in the fault plane 
is measured in units of Ax and the fault surface is a 
square of length 256A~ on a side. The standard deviation 
of the surface roughness of an individual surface over 
length 256A.x is g56. The shear modulus and Poisson’s 
ratio are p and v respectively. The dimensionless mean 
aperture is: 

a = (d)/c$56, (5) 

where (d) is the mean aperture. Figure 9(a) gives these 
results in dimensionless form. To rescale these curves to 
any situation of interest, take the total fault size L, 
compute the standard deviation of the surfaces over this 
length &-, and set Ax = L/256. Multiply the ordinate by 
& and the abscissa by hul( 1-v)*abl&. The shear offset 
on Fig. 9(a) is expressed in integral units of AX. 

These results show that in general as the surfaces are 
pressed together the normal stress increases in an expo- 
nential manner (Brown & Andrews in preparation). The 
first item of note is that the fractal dimension has little 
effect on the normal stressclosure relation. Faults with 
high fractal dimension are only slightly stiffer than those 
with low dimension (Brown & Andrews in preparation). 
Figure 9 shows a series of curves each corresponding to a 
different shear offset along the fault. When the surfaces 
are offset in shear, the fault dilates as long wavelength 
bumps ride over one another. As this dilation occurs, 
both the amplitude and the wavelength of the important 
contacting asperities increases, requiring higher normal 
stress just to maintain a given mean aperture. The point 
at which the surfaces are touching is indicated where the 
right-hand edge of each curve reaches the zero stress 
level. Since the aperture distribution is Gaussian, then 
the median and the mean are equal and the total range of 
apertures is about f3o, from this mean, where o, is the 
standard deviation of the aperture. When the surfaces 
just touch the mean aperture is about 3o, and the 

maximum aperture is about 6u,. For example, on the 
curve labeled ‘8’ on Fig. 9(a), the mean aperture is about 
0.3 when the surfaces just touch, but apertures range 
from 0 to 0.6 (0.1 is therefore the standard deviation of 
the undeformed aperture). As the void space is closed 
under normal stress, then the aperture distribution is 
truncated to zero and the peak in the bell curve occurs at 
the smaller aperture value of approximately 3a,-6, 
where 6 is the closure. 

The results of Fig. 9(a) can be used to determine how 
much void closure can be expected at a given normal 
stress for a typical fault. As a fault slips new voids are 
opened along the fault plane due to the overriding of 
surface roughness. Scholz (1988) used an approximate 
(order of magnitude) elastic crack solution to infer that 
all voids with lengths in the fault plane greater than 
about 1 cm will be closed by elastic deformation at 
depths greater than 10 km. Is this possible? Figure 9(b) 
shows the stress-closure curves resealed for a fault 
similar to that associated with the Independence Mine, 
Alaska. A depth of 10 km is assumed to provide about 
160 MPa of normal stress on a normal fault with 60” dip. 
If we focus on the 8 m shear offset curve, the unde- 
formed mean aperture is about 1.5 m and the total 
aperture range is O-3 m (remembering that the unde- 
formed mean aperture is half of the total range). We can 
see that when this normal load is applied, then the mean 
aperture decreases to about 0.75 m which means that 
about 25% of the original total aperture is lost due to 
elastic deformation. At this point there is still 75% of the 
original aperture remaining leaving ample pathways for 
fluid flow. Details of fluid transport properties of void 
distributions of this type can be calculated using 
methods discussed by Thompson & Brown (1991) for 
example. 

Limits of applicability 

Although the fractal fault model is versatile, there are 
limits to its general applicability. Obvious shortcomings 
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are that we have not explicitly incorporated brecciation 
and gouge formation. Failure of asperities by secondary 
fracturing at loads above the elastic limit, and the 
generation of gouge and breccia by wear presumably act 
to reduce the aperture from that computed in our fault 
model. These processes are indeed important in natural 
fault zones (Newhouse 1940, Power et al. 1988). For 
example, Power et al. (1988) develop a fractal fault 
model for gouge and breccia generation that is similar to 
ours, but focuses on the opposite effect. That is, our 
model focuses on void space created by ‘riding-up’ of 
rough surfaces during shearing, but Power et al. (1988) 
focus on the generation of gouge and breccia layers 
generated during sliding of fractal fault surfaces in order 
to model the approximately linear relationship between 
fault slip and gouge thickness observed in some natural 
fault zones. Generation of gouge and breccia by wear 
may significantly reduce the aperture volume from that 
predicted by our model, but the exact influence of gouge 
and breccia formation is difficult to predict in detail. 
Extremely fine-grained gouge packed into void space 
will almost certainly decrease permeability along the 
fault, but on the other hand, coarser-grained breccia 
may act as a proppant, locally holding fault walls apart, 
Overall, our model will likely give an upper bound to the 
volume available for both mineral filling and fluid trans- 
port. When applying this model to field data it will be 
important to keep these limitations in mind. 

DISCUSSION 

Relation of void volume to vein geometry and fluid 
storage 

Limitations aside, the ability to calculate aperture 
between fault surfaces as a function of effective normal 
stress is an important aspect of the fractal fault model 
with significant implications for predicting vein forma- 
tion and fault mechanics. Void volume is the product of 
mean aperture and fault surface area. For a given 
roughness, amount of slip and applied normal stress, 
void volume is a sensitive non-linear function of fluid 
pressure. This arises from the effective stress law (S, = 
X-P,), where S, is the applied normal stress due to 
tectonic and overburden loads and Pf is the fluid press- 
ure. High fluid pressure corresponds to low S,, thicker 
single-event veins, and presumably veins with greater 
lateral continuity because of the smaller contact area 
between fault walls. Thin, discontinuous veins are more 
likely in low fluid pressure environments. Economic 
geologists have attempted to correlate vein thickness 
with ore grade, often with mixed results (e.g. Newhouse 
1940, Stoll 1940, Ray 1954, Roscoe 1951, Sanderson et 
al. 1994). Notably, ore deposition from most natural 
fluids is enhanced by a drop in fluid pressure, particu- 
larly if chemical oversaturation is induced by boiling 
(Guilbert & Park 1985). In the fractal fault model, once 
steady-state fluid flow was developed, local variations in 
aperture thickness would give rise to local fluid pressure 

variations. Along the flow direction as an abrupt open- 
ing in void space is encountered, the pressure would 
drop severely-potentially leading to boiling and/or 
precipitation of vein filling materials. This might give a 
positive correlation between vein thickness and ore 
grade at the length scale of the slip increment. 

The spatial distribution, volume, and pressure of fluid 
stored between fault walls is also important in several 
models of earthquake mechanics (Sibson 1989, Rice 
1992, Byerlee 1993). The fractal fault model allows us to 
compute directly the volume of fluid stored in void space 
between rough fault surfaces using the results shown in 
Fig. 9. Consider a fault with roughness similar to that 
found in the Independence Mine, Alaska, where the 
standard deviation of surface topography is 5.6 m over a 
fault surface with linear dimension of 256 m (Table 1, 
Fig. 9b). Assume a large earthquake (M = 7+) with 
approximately 4 m of slip at a depth of 10 km. The mean 
aperture at 160 MPa effective stress (equivalent to 
hydrostatic fluid pressure at approximately 10 km 
depth) is about 0.33 m, corresponding to 330 1 of fluid 
per m2 of fault surface, on average. (Note: a 1 mm thick 
layer of fluid spread over 1 m2 area has a volume of 11). 
If fluid pressure is increased to 0.8 lithostatic (216 MPa), 
the effective normal stress is approximately 54 MPa and 
the mean aperture increases to approximately 0.47 m 
and the fluid volume is increased by a factor of 1.4 to 
470 1 rnp2. These types of calculations may be used to 
constrain a number of different earthquake mechanics 
model parameters, including estimates of the volume of 
heterogeneously pressurized fluid trapped in sealed 
compartments within a fault zone, and the amount of 
trapped fluid that should be expelled from or drawn into 
the fault zone following a large earthquake. Such model- 
ing is beyond the scope of this paper, however. 

Multiple slip model of vein development 

Once the two surfaces have been offset in shear during 
a slip increment the void space is filled with vein 
material. The new vein formed will have exactly the 
same geometry and statistical properties as the aperture. 
During subsequent slip events the process is the same, 
with the complications that the fault may not break 
exactly along the same surfaces as before. Since the 
surfaces are fractal they have the property that the 
longest wavelength roughness features also have the 
highest amplitude. The long-wavelength components of 
the fault roughness will tend to be more resistant to 
breakage during slip than the smaller features. There- 
fore, it is likely that the fault will follow the long- 
wavelength trends, but may create a new slip surface at 
finer length scales. To mimic this process, we use a 
‘phase scrambling’ technique alluded to in a previous 
section in the context of mismatch of rock joint surfaces. 
At the beginning of each slip event, a new fault surface is 
generated, which has identical long-wavelength charac- 
ter to the previous slip surface but is different at small 
wavelengths. To generate this new surface the same 
random number seed is used for the phase spectrum at 
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long wavelengths and the same anisotropy factor is used, 
but the phase spectrum is re-randomized (scrambled) at 
small wavelengths. The cumulative effect of repeated 
episodes of slip, filling with vein material and redefini- 
tion of the slip surface produces complex vein structures 
with ‘pinch and swell’ character and entrained wall rock 
(Fig. 10). After fault slip accumulates and several new 
veins are added there is a tendency for the composite 
vein network (as defined by the outer bounds of vein 
material) to evolve quickly from a highly sinuous and 
variable width body to a more tabular geometry (Fig. 
10). 

Applications to economic geology 

The fractal fault model produces a three-dimensional 
vein system that is qualitatively similar to many fault 
controlled mineral deposits. Features of particular sig- 
nificance include the ‘pinch and swell’ geometry which is 
elongated parallel to slip direction, the complex inter- 
twining of veins formed during episodic slip, and incor- 
poration of slices of wall rock (Fig. 10). Success in 
replicating these key features opens several potential 
avenues for future research with application to explor- 
ation and development of fault-controlled ore deposits. 

Fault-controlled ore deposits are marked by a tem- 
poral sequence of mineralizing events, which reflect 
complex variations in fluid temperature, pressure and 
chemical constituents over time (Guilbert & Park 1985). 
Ore minerals commonly form during a limited time 
interval in the total history of faulting and fluid influx. 
Unraveling the sequential history of mineralization, or 
mineral paragenesis, provides insight into the timing of 
mineralization, the relative proportion of vein material 
which contains ore, and also provides information that is 
used to guide further exploration within a district. The 
fractal fault model is conceptually useful in these en- 
deavors. 

The tendency for the composite vein network to 
evolve quickly from a highly sinuous and variable width 
body to a more tabular geometry as fault slip accumu- 
lates and new veins are added to the system has import- 
ant implications for understanding the distribution of 
ore based on mapping and sampling by drilling (Fig. 10). 
Spatial changes in the thickness of the composite vein 
may greatly underestimate the structural complexity and 
variability in thickness of individual ore-bearing veins 
generated during only a small number of slip events. 
Contradictory evidence for mineral paragenesis based 
on cross-cutting relationships is a common problem. 
This type of contradiction is predicted by the fractal fault 
model. Inspection of the cross-sections in Fig. 10 reveals 
that although younger veins consistently cross-cut older 
ones, there is no specific sequence for juxtaposition 
between veins of different age. At one locale, a vein of 
intermediate age may separate a younger vein from an 
older one, but in adjacent regions the sequence of vein 
juxtaposition may be partially or totally different, and 
one or more veins may not be present at all. Careful 
analysis of model cross-sections like those in Fig. 10 is at 

least conceptually useful, and a thorough statistical 
analysis of the structural relationships between simu- 
lated veins may ultimately provide a quantitative tech- 
nique for interpreting structural data and estimating 
paragenesis. Once a mineral paragenesis is established, 
the fractal fault model may be used to predict the 
volumetric proportion of ore grade veins, and the 
amount of gangue vein and wall rock that must be 
removed during mining. Such data may strongly affect 
the economic valuation of the deposit. Variations in vein 
thickness and ore grade encountered in drill holes can 
also be simulated, and may lead to new strategies for 
drilling and estimating ore reserves during exploration 
and mining. 

Although the fractal fault model is versatile, we have 
not explicitly incorporated brecciation and gouge forma- 
tion. These processes will restrict fluid flow and total 
fluid volume, yet increase rock-fluid contact area-all 
of which will affect ore deposition in some way. 
Additionally, we note that fault intersections are im- 
portant conduits for fluid flow and mineralization in 
fault-controlled ore deposits (Knopf 1929, Guilbert & 
Park 1985). The reader should keep these limitations of 
the model in mind when evaluating an actual deposit in 
the field. 

Geostatistics and sampling strategy 

Predicting the structural trends, continuity and thick- 
ness of veins in the subsurface remains a fundamental 
problem for exploration and development of fault- 
controlled ore deposits. Geologists must rely on geo- 
statistical models of the deposit, which commonly 
depend upon sampling by drilling. A sampling interval 
that is too large (beyond the sill in the variogram) results 
in poor predictions of deposit geometry and grade. 
Sampling at close intervals increases the ability to pre- 
dict values between samples, but may severely limit the 
area of the deposit that can be explored because of 
drilling costs. Drilling strategy should take the expected 
properties of the semi-variogram into account. Vario- 
grams of fault-controlled vein geometry are anisotropic, 
with directional variation in the correlation distance 
mimicing the structural anisotropy of both the veins and 
fault surfaces (Fig. 7). Our preliminary modeling, which 
is based on the fault data listed in Table 1, indicates that 
the drilling pattern should be designed to penetrate the 
vein in an elongated pattern, with approximately a 2.5:1 
ratio in hole spacing between the slip parallel and slip 
perpendicular directions. The preferred distance be- 
tween points of penetration is a function of the total 
amount of fault slip, and should lie within the expected 
range of the variogram sill (Fig. 7). The geometry of 
composite vein systems becomes more tabular as slip 
accumulates than the individual veins generated during 
a single slip episode (Fig. 10). This means that the 
variogram for composite vein thickness will be different 
from that for individual veins, which have a shorter 
correlation length because of greater geometrical vari- 
ability (Fig. 7). The variogram for spatial distribution of 
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ore grade is therefore expected to lie between the 
variograms of composite and individual vein thickness 
variability, given the common geological observation 
that ore deposition usually occurs only during part of the 
veining history. This qualitative result may prove useful 
when attempting to constrain predictions of ore grade 
using a combination of assay and structural data. 

Further new work on vein systems is needed to test 
and refine the fractal fault model. Specific measure- 
ments include detailed surveys of vein walls over the 
spatial range of cm to kms, measurements of the aspect 
or ‘width to length’ ratio of both individual and compo- 
site veins, and estimates of the void spaced filled by new 
vein material relative to wall rock and existing vein 
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